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Abstract--This paper presents the results of an experimental investigation on the response of solid particles 
to a zero-pressure gradient, vertical, turbulent boundary layer in air. Two different size classified glass 
beads, 50 and 90/~m dia (Re ~, 1 and 4, respectively), were independently dispersed in the air flow with 
a 2% mass loading. Velocities of both the contaminant particles and the seeded air flow were measured 
using laser Doppler anemometry. The data show that the light particle loading had no effect on either 
the mean flow or the turbulence properties of the air boundary layer. The measured r.m.s, velocity 
fluctuations of both particle sizes nearly equaled the flow turbulence intensity in the streamwise direction 
but were strongly attenuated in the normal direction. This paper presents a model for predicting the mean 
particle behavior to within 2% and the particle r.m.s, velocities to within 50%. 
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I N T R O D U C T I O N  

Turbulent  gas flows laden with solid particles are common in both nature and technology but 
unfortunately only limited design tools are available for such flows. The addition of a particulate 
phase to the already complicated turbulent flow adds at least three additional dimensionless 
parameters  to the description of the problem. Empiricism is difficult with such a large parameter  
space so design techniques must be based on basic principles. An improved understanding of  the 
interactions between particles and turbulence is required. 

The class of  particle-laden flows can be broken up into two subclasses: flows with particle- 
induced flow modification; and flows without particle-induced flow modification. Many previous 
experiments have examined the former subclass where the particles affect the flow properties, 
without satisfactorily examining the simpler, but important ,  subclass of  particle behavior in an 
unaffected turbulent flow. The interaction between the two phases in the first subclass will be a 
function of  the particle properties and of  the local particle concentration. In order to predict this 
local concentration, the behavior of  the particles in a given fluid environment must be understood. 
In other words, the response of  a particle cloud to its fluid surroundings can affect the behavior 
of  the fluid, further complicating the interpretation of  the measured results. The current 
experiments, therefore, examine the response of particles to a known turbulent fluid shear flow. 

Certain criteria must be met to ensure minimal flow modification due to the particle phase. 
Globally, the particle mass flux must be small compared to the fluid mass flux so that the total 
drag force on the fluid due to the particle phase is much less than the viscous and pressure forces 
in the fluid. This must  be true on a local scale as well, i.e. there must be no areas of  high local 
particle mass loading. In addition, to ensure no particle-induced turbulence modification, the 
particle geometry must be carefully chosen. The diameter of  each individual particle must be less 
than the size of  the smallest energy-containing eddies in the flow, prohibiting the straining in the 
vicinity of  the particle and the wake behind the particle from adding to the fluid turbulent energy. 
Meeting these criteria reduces the mechanisms for particle-induced flow modification. 

The flow will interact with the particles through a variety of  forces. (1) The flow will impose 
a steady drag force on the particle resulting from the fluid viscosity, the particle geometry and 

tThis paper supersedes Rogers, C. B. & Eaton, J. K. 1989 "Particle response and turbulence modification in a flat plate 
turbulent boundary layer" [in Turbulence Modification in Dispersed Multiphase Flows (Edited by Michaelides, E. E. & 
Stock, D. E.); ASME FED, Vol. 80], where preliminary results of this work were reported. 
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the particle relative velocity (the velocity of the particle in the reference frame of a fluid point). 
(2) In the case of an accelerating fluid, a pressure gradient across the particle will impose a further 
force on the particle. For the case of an accelerating particle, one must also consider the force 
resulting from (3) accelerating the fluid in the vicinity of the particle (the "added mass" force), and 
from (4) the inertial history of the accelerating particle (the "Basset history" force). Lastly, (5) other 
external forces, such as gravity, electrostatic forces and chemical forces must be considered. For 
the limiting case of the particle density being much greater than the carrier fluid density, however, 
the particle transport equation reduces to 

d fD 
dt Vp = - - + g ,  [1] m p  

where vp refers to the instantaneous particle velocity, mp refers to the particle mass, g is the 
gravitational acceleration and fD denotes the drag force on the particle. 

The total drag force on a particle is a function of the particle Reynolds number, the particle 
behavior, and the local fluid behavior. The particle Reynolds number relates the particle inertial 
forces to the fluid viscous forces; mathematically expressed as 

R e p  - -  ureldp, [2] 

where urel and d o refer to the particle relative velocity and diameter, respectively, and v denotes the 
fluid kinematic viscosity. Small particles with small relative velocities (Rep < 0.1) will have a particle 
drag proportional to the particle relative velocity (Stokes 1851): 

where t~ is the fluid viscosity. Furthermore, particles in fluid shear will experience a lift force. 
Saffman (1965) derived an expression for this lift force in the limit of small R%. Particle spin will 
also add to the particle drag force, both on its own (Rubinow & Keller 1961) and when coupled 
with fluid shear (Magnus 1855). In addition, high fluid/particle accelerations will affect the total 
particle drag (e.g. Odar & Hamilton 1964). Finally, fluid turbulence can decrease particle drag by 
accelerating the transition process on the fluid boundary layer on the particle (Torobin & Gauvin 
1960). In this limit of small R% (<  10), small velocity gradients across particles, and large particle 
densities relative to the fluid density, seen in the current experiments, the total particle drag force 
is essentially the steady drag force, all other forces being negligible. Although many have tried 
to analytically estimate the magnitude of this drag for intermediate R% (e.g. Oseen 1910), the 
empirical relations of Morsi & Alexander (1972) were used in the current analysis because of their 
excellent agreement with experimental data. 

Given an appropriate equation of motion, an individual particle's motion may be analyzed 
knowing the gas velocity field experienced by the particle. The average particle behavior could then 
be predicted by computing a representative sample of particle trajectories. Corsin & Lumley (1956) 
pointed out that what is needed is the particle relative velocity (the difference between the particle 
and fluid velocity) following a particle path rather than the one measured in the Eulerian reference 
frame. Since particles have more inertia than a corresponding fluid point, this particle-Lagrangian 
reference frame can be considerably different from the classical-Lagrangian reference frame of the 
fluid point, or the Eulerian reference frame of a probe. Predicting the effect of the difference 
between the reference frames is further complicated by the gravitational drift of the particle. 
Gravity will cause the particle to be constantly changing fluid neighborhoods, and therefore 
reacting to different turbulence than would be measured in the Eulerian reference frame or than 
would be seen by a fluid point in the classical-Lagrangian reference frame. This "crossing- 
trajectories effect" was first postulated by Yudine (1959). 

The present set of experiments examines the behavior of a group of particles in a gas-phase 
turbulent boundary layer which is unaffected by the particle presence. The flat plate boundary layer 
was selected because it has been so extensively investigated in single-phase flows. The objectives 
of the experiment were then to measure both the mean and standard deviation of the particle 
velocity probability density function (pdf) and to relate these measurements to the known 



PARTICLE TRANSPORT IN A VERTICAL TURBULENT BOUNDARY LAYER 821 

gas-phase flow statistics. The particle/fluid interaction was restricted to steady particle drag by the 
use of particles with a high relative density and Rep varied from 1 to 5. 

RELATED EXPERIMENTAL WORK AND MODELS 

This review will focus on experiments illuminating the behavior of particles in turbulent flows 
under conditions of relatively light mass loading. A full review of the related experimental work 
is presented in Rogers (1989). Most of the existing work has been restricted to nearly homogeneous 
core flows, pipe flows and jet flows. It is hard to reach any general conclusions based on the 
previous works, mainly because of the large variation in the parameter space. Uneven particle 
loading, particle acceleration, the direction of gravity and particle size and shape variation all 
contribute to variations in the measured particle statistics. 

Particle-laden homogeneous and isotropic flow has been the focus of several experiments, with 
the main interest being in particle dispersion by turbulence. The earliest work in this area was by 
Soo et al. (1960) who examined the response of both 115 and 230 g m dia glass beads in a horizontal, 
nearly-isotropic, water flow. Particle velocities were measured photographically, Their results 
showed that the particles failed to modify the flow turbulence for mass loadings up to 6% and that 
the particle and flow rms velocities were the same. 

Snyder & Lumley (1971) photographically tracked four different types of particles with 
time-constants ranging from 1 to 50 ms through a vertical homogeneous isotropic flow. Their main 
emphasis was on measuring classical-Lagrangian statistics by extrapolating from the small-particle 
results. The smaller time-constant particles tended to remain correlated over longer times, possibly 
a result of the crossing-trajectories effect. 

Wells & Stock (1983) isolated the crossing-trajectories effect by electrostatically charging particles 
and then varying the magnetic field surrounding a near-isotropic core flow. By thus varying the 
effective gravitational drift velocity, they concluded that the crossing-trajectories effect was signifi- 
cant only for particles with drift velocities larger than the fluid r.m.s, velocities. Finally, they saw 
evidence that the particle inertia enhanced the particle dispersion where the gravitational drift 
retarded the dispersion. In the current experiments, the drift velocities were greater than the fluid 
fluctuating velocity, implying that the effect of crossing-trajectories affected the particle's behavior. 

Kr/imer & Leuckel (1988) examined the behavior of particles in the nearly-homogeneous core 
flow of a pipe. They varied the turbulence scales by placing grids upstream of the particle injector. 
They derived an empirical relationship between the measured particle and fluid r.m.s, velocities 
based on the fluid time scale and the particle time-constant. Their equation was based on the results 
for glass beads ranging from 26 to 143 #m dia. 

Several experiments of particle-laden fully-developed pipe flows have examined both the 
behavior of a particle cloud and the dispersion of a stream of particles. Householder & 
Goldschmidt (1969) present an overview of attempts which have been made to correlate turbulent 
diffusion to particle dispersion (Schmidt number) in both jet flows and pipe flows, showing a large 
variation in the experimental results. Again, the lack of knowledge about the response of a particle 
cloud to the fluid turbulence has restricted the interpretation of the measured statistics. 

Lee & Durst (1982) examined the particle velocity profiles in a upward pipe flow for 100, 200, 
400 and 800/~m glass beads. The particle relative velocity varied across the boundary layer, 
exceeding the flow velocity near the wall. A model was proposed, splitting the flow field into two 
areas: an area where the eddy scale was large compared to the particle scale, implying that the 
particle submitted to all fluid oscillations; and an area where the particles failed to be excited by 
the fluid turbulence. They do not incorporate the crossing-trajectories effect, and therefore their 
model was not used in the current experiments. Furthermore, the particles in the current 
experiments were excited by the larger-scale turbulence and ignored the smaller-scale turbulence 
and therefore were in the "intermediate" range of their model. 

Others, such as Doig & Roper (1967), Reddy & Pei (1969), Tsuji et al. (1984), Boothroyd & 
Walton (1973) and Matsumoto et al. (1986), examined the particle induced fluid modification. Also, 
multiple experiments have examined the behavior of particles in water flows (e.g. Steimke & Dukler 
1983), where particles will experience many of the forces that can be neglected in flows with large 
density differences between the phases. 
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A large experimental effort has examined the behavior of particle-laden jets, ranging from 
the work of Parthasarathy & Faeth (1987) and Modarress et al. (1982), examining particle/ 
turbulence interaction, to the structure/concentration correlations of Longmire & Eaton (1989). 

Existing models for predicting the behavior of particle-laden flows fall into three categories: 
(i) two-fluid models; (ii) trajectory models; and (iii) direct numerical simulations. The latter exactly 
simulates the behavior of particles in a model flow field. 

Two-fluid models represent the particle behavior as a dilute, compressible gas. Extensive work 
has been done in this area by Ishii (1975), Harlow & Amsden (1975), Rizk & Elghobashi (1985) 
and Elghobashi & Abou-Arab (1983). The important implicit assumption of this model is that 
particle dispersion acts similarly to turbulent diffusion. Because of this assumption, many of the 
differences between a particle and a fluid point must be ignored. 

Trajectory models assume a fluid field and then follow individual particles through that field. 
The "particle source in cell" technique of Crowe & Pratt (1972) first solves for the fluid phase, then 
uses an appropriate transport equation, taking all the necessary terms into account, to predict 
the particle motion. The method then finds a new solution for the fluid phase based on the updated 
particle position. This method is iterated until the routine converges on a solution for both the 
particle and the fluid field. Although this method works well for the mean statistics, it cannot 
imitate turbulent dispersion. Others have examined a Monte-Carlo type method (e.g. Gosman & 
Ioannides 1981) where the fluid turbulence is assumed to be random. Chen & Crowe (1984) showed 
that although this method worked well for isotropic flows, it was unable to handle non-isotropic 
flows. 

In general, most of these models rely on some method for estimating the fluid properties along 
the particle path. The method most commonly chosen is to assume that the particles tend to follow 
a fluid point and therefore use a x-E classical-Lagrangian time-constant to relate the Eulerian and 
Lagrangian statistics. The particles in the current experiments had a substantial gravitational drift 
velocity, inhibiting the use of descriptors for a fluid point as descriptors for a single particle. 

Lastly, direct numerical simulations of particle-laden isotropic and homogeneous flows have led 
to increased insight in the interaction between particles and their surrounding fluid. Maxey & Riley 
(1983) simulated the behavior of individual particles in a random flow field and saw that particles 
tended to collect in areas of high strain and low vorticity. Squires & Eaton (1989) saw similar 
behavior in direct simulations of homogeneous/isotropic flows. 

EXPERIMENTAL TECHNIQUES 

The present experiments were performed in a blower-driven, two-dimensional, vertical turbulent 
boundary-layer wind-tunnel. The flow went vertically upwards and was uniformly loaded with 
particles. Figure 1 shows the full schematic of the tunnel. The air was driven by a 1 hp blower 
through extensive flow conditioning before entraining particles in the particle feeder. The flow 
conditioning consisted of two diffusers with four large grids and a right-angle section directing the 
flow upward. The flow then passed through the particle feeding section and through a set of grids 
to enhance particle/fluid mixing. After the grids, the flow passed through a 3:1 contraction and 
then a 3.8 cm thick hexagonal honeycomb (0.48 cm cell size) at the test section entrance. The 
honeycomb was installed to keep the particle distribution uniform; without it the contraction shape 
would cause all the particles to migrate toward the tunnel centerline. The test section was a 
rectangular channel, 7.6 × 46 cm, and 100 cm tall. All of the test section walls were Plexiglas for 
optical access for laser Doppler anemometry. The boundary layer was tripped upon entry to the 
test section by a 0.16 cm plastic strip which spanned the test wall. The particles were then recovered 
after the test section using a cyclone separator. 

It was imperative to have a very controlled, evenly loaded, uniform second phase. For this reason 
we designed a unique particle feeding system (figure 2). Two belts crossed the wind-tunnel at four 
spanwise locations. Each belt had 50 1.3-cm tall aluminum buckets attached to it. Each bucket had 
a large entrance (10 mm dia) but a small exit area (1.5 mm dia) so that the buckets could be rapidly 
filled on either side of the tunnel and would drain at a constant rate as they moved across the tunnel. 
Figure 3 is a schematic of a single belt showing the feeding method. The particles fall out of the 
bottom of the bucket to be entrained by the flow and swept upward into the test section. The grids, 
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Figure 1. Wind-tunnel schematic. 

the contraction and the honeycomb downstream all ensured further loading uniformity. The 
uniformity was checked both visually with a laser sheet, and quantitatively by the LDA. The 
particle concentration varied < 5% across the boundary layer. This measurement resulted from 
comparing the normalized average data rate for the particle phase at all longitudinal positions to 
the normalized particle mean velocity. 

Two different size glass beads were used for the particle phase in the present set of experi- 
ments and are described in table 1. All particles were commercially sized to ensure a 10/~m window 
in the particle diameters. Figure 4 shows the resulting distribution in the particle diameters. Talcum 
powder was used as a flow tracer and was injected with an airbrush upstream of the blower. 

The LDA system was a low-power, single-component, forward-scattering system. A 4 mW 
He-Ne laser, used in conjunction with a beamsplitter, supplied the two beams spaced 50 mm apart. 
The beams were focused using a 480.5 mm focal length lens. The resulting measuring volume was 
0.5 mm dia, containing approx. 80 fringes; 6.1 #m apart. This relatively large diameter inhibited 
accurate velocity measurements closer than 4 mm (y + = 100) from the wall. By rotating the optics 
and inserting a Bragg Cell (1 MHz shift), negative velocities could be accommodated in the normal 
direction. Collection optics were used in the on-axis, forward-scatter configuration. The signal from 
the photomultiplier tube was processed using a TSI Model 1980B counter processor interfaced to 
an IBM PC. 

LJ I,o o, 
Figure 2. Particle feeder: full schematic. 
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Figure 3. Particle feeder: single belt. 

The diameter difference between the particles and the flow seed was large enough to use a 
discrimination scheme based on the intensity of the scattered light. The discrimination setting was 
reset before every run by examining the probability density functions of the velocity of the air flow 
both with and without particles. Since the particle loading was low enough that the gas phase 
remained unchanged in the presence of the particles, all variations in the probability density 
function of the fluid would result from particle contamination, i.e. signals from particles being 
interpreted as flow tracers. Conversely, there was no measurable contamination of the particle 
statistics by the flow tracers. The preamplifier gain was reduced so that the flow tracers did not 
provide sufficient strength to trigger the processing electronics. Figure 5 demonstrates the effect of 
particles on the flow probability density function and shows that particle contamination effects are 
negligible. 

Flow power spectra were also calculated using the LDA. The conventional method of finding 
spectra using a fast Fourier transform of a periodically sampled velocity record is not feasible with 
an LDA in air flow because of the random intersample time. A multitude of methods for computing 
power spectra from LDA data have been presented in the literature (e.g. Adrian 1987). In 
particular, the straightforward method of Gaster & Roberts (1977) was used. The gas-phase power 
spectra were computed by taking the direct Fourier transform of the calculated velocity 

Table I. Description of experimental parameters for 
particles 

Particle dia (#m) 

Material Glass Glass 
Diameter range ~ m )  45-55 85-95 
Density (kg/m 3) 2500 2500 
Mass loading (g/s) 5 5 
Mass fraction 0.02 0.02 
Volume loading (cm3/s) 2 2 
Volume fraction 10 -5 10 -5 
Stokes time constant (s) 0.019 0.0625 
Correction factor 1. I 1.4 
Corrected time constant (s) 0.018 0.044 
Rep range 1.0-1.2 2.2-4.5 

50 90 
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autocorrelation. The autocorrelation was formed by dividing the time-axis into 1000 bins, each 
0.5 ms long. To ensure statistically stable autocorrelations, 50,000 points were taken. Gaster & 
Roberts showed that the Poisson distribution of  the intersample time alleviated all aliasing 
problems. Figure 6 compares power spectra taken by a hot wire and an LDA. The agreement is 
within the measurement uncertainty. 

The measurement uncertainty in these experiments, for a 95% confidence level, is 3% for the 
unladen gas-phase mean and fluctuating measurements. The uncertainty results from errors in 
particle discrimination, and the limitations of a finite data sample. All errors due to velocity bias 
are < 1% for the given fluid turbulence levels. Errors in the particle statistics are slightly higher. 
Variations in particle history, particle shapes and particle diameters increase the uncertainty to 5% 
in the mean. It can be shown that a 10 #m variation in the particle diameter can result in up to 
a 30% increase in the measured r.m.s, particle velocity (Rogers 1989). 

R E S U L T S  

The main results presented in this paper fall into two categories: mean and fluctuating velocity 
profiles for the gas and particle phases. Results are presented at two axial stations: X = 55 and 
85 cm above the boundary layer trip. The fluid boundary layer characteristics are listed in table 2. 
In the following paragraphs, "unladen flow" will refer to measurements made of the gas phase in 
the absence of particles and "laden flow" will refer to measurements made of the gas phase in the 
presence of particles. 

Table 2. Fluid parameters [dissipation from Murlis et al. (1982): Reo = 1089] 

Flow parameters 

Flow scales 

X = 55 cm 699 20 m m  
Freestream velocity 8.0 m/s 
Displacement thickness (6") 3.0 m m  
M o m e n t u m  thickness (0) 2.1 m m  
Shape factor (H) 1.4 
Re6, 1550 
Re0 1090 
U r 0.38 m/s  
Skin friction coetficient (Cf/2) 0.0022 

X = 85 cm 699 24 m m  
Frcestream velocity 8.2 m/s 
Displacement thickness (6 *) 3.8 m m  
M o m e n t u m  thickness (0) 2.6 m m  
Shape factor (H) 1.4 
Re~. 2020 
Re 0 1410 
U r 0.37 m/s  
Skin friction coefficient (Cf/2) 0.0020 

X = 55 cm, y + = 300 Dissipation 5.0 m/s  2 
Kolmogorov length scale 0.16 m m  
Integral scale (streamwise) 7.3 m m  
Integral scale (normal) 3.8 m m  

IJMF 16,5--F 
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A hot-wire anemometer was used to qualify the tunnel. First, the comparison between the 
hot-wire and LDA measurements ensured that the talcum flow tracer was accurately following a 
fluid point. Second, the two-dimensional nature of the flow in the test section was documented by 
making spanwise traverses across the flow. The mean velocity was found to vary < 2% across the 
span of the boundary layer. Last, the velocity profiles and calculated wall-friction coefficients were 
compared to the data of Purtell et al. (1981). The agreement in the mean and r.m.s, velocity 
measurements was better than 2%, except for the slightly larger freestream turbulence in the present 
results due to the honeycomb at the test section entrance. Figures 7 and 8 compare the measured 
velocity statistics of Purtell et al. (1981) to the present experiment. Figure 9 compares the 
wall-friction coefficient distribution compiled by Purtell et al. to those calculated at both 
downstream locations in the present experiments. The agreement is within 5%. 

Particle response to mean f luid velocity 

Before examining the behavior of the particles in a gas boundary layer, one must ensure that 
the particles are not affecting the behavior of the boundary layer. Figures 10(a, b) show the 
boundary layer profiles, both with and without particles. The agreement is better than the quoted 
3% uncertainty, implying that the effect of the particle phase on the behavior of the fluid phase 
was negligible. 
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Figure 8. Qualification: comparison of fluctuating velocity 
profiles. 
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ity profiles. 
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Figure 11. Normal mean velocity profiles. X = 55 cm. 
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Mean particle and fluid velocity components normal to the wall were measured (figure 11) to 
ensure no normal particle migration. Figure 11 shows that the honeycomb at the contraction exit 
was successsful in eliminating the normal velocity component of the particles resulting from the 
contraction geometry. The non-zero values result from slight beam misalignment. 

The particle mean velocity profile shown in figure 12 was similar in shape to the fluid velocity 
profile, but at a lower mean velocity due to gravity. As expected, the relative velocity for larger 
particles is greater. Comparison of  the particle and flow velocity profiles shows a small variation 
in the particle relative velocity across the boundary layer. Some authors have attributed similar 
variations to variations in the particle drag coefficient caused by fluid turbulence. In these 
experiments, however, there is no increase in particle drag due to turbulence but rather this 
variation is a direct result of  particle acceleration. Particles closer to the wall are convected upward 
by a slower velocity fluid than those in the freestream. Therefore, the particle velocities measured 
close to the wall will be those of  particles whose residence time (i.e. time in the test section) is greater 
than corresponding particles in the freestream. Thus, particles closer to the wall will be closer to 
their asymptotic velocity than particles in the freestream. The particle asymptotic velocity is the 
particle terminal velocity measured in an Eulerian reference frame, i.e. the velocity of  a particle 
where drag forces and gravitational forces are equal and opposite. At the limit of  long residence 
times, the particule relative velocity will be constant across the boundary layer. 

In order to check the hypothesis that the particle relative velocity variation across the boundary 
layer is solely a function of  particle acceleration, a model for estimating the particle velocity from 
the fluid velocity was developed. The assumptions were: (1) the particle drag force varies linearly 
with the particle relative velocity; (2) all particles have the same initial velocity, entering the test 
section; (3) the fluid axial acceleration is much smaller than the particle axial acceleration; (4) the 
particle is accelerated by a constant fluid speed; (5) the normal component of the particle 
fluctuations is small compared to the particle mean velocity; and (6) the only external body force 
on the particles is the gravitational force. 

Based on Stokes' analysis for small Rep ( <  0.1), the particle transport equation can be written as 

d 
dt vp = ~ u~l + g, [4] 

where Vp is the particle velocity, g is the gravitational acceleration and ~ is a constant of  
proportionality. In the limit of  small Rep ( <  0.1), ~ will approach the reciprocal of  the Stokes 
time-constant, 

ppd~ [5] 't'St°kes = 18# ' 

where  tip and d o are the particle density and diameter, respectively, and/~ refers to the fluid viscosity. 
The Stokes solution is not valid for the Rep in the current experiments (1 < R% < 5), and therefore 
an empirically derived time-constant was used and the small non-linear drag terms were neglected. 
The empirical time-constant was defined as 

l U t e r m  - - - - ,  [6] 
g 
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where Uterm is the particle terminal velocity. It is implicitly assumed that the mean particle direction 
is in the streamwise direction, implying that only the streamwise components of the particle and 
fluid velocities are important. The plot of particle normal velocities, figure 11, substantiates this 
assumption. Equation [6] results from evaluating the particle transport equation [4] at the particle 
asymptotic velocity (i.e. dvp/dt =0) .  The particle terminal velocity was estimated from the 
empirical relationship derived by Morsi & Alexander (1972) relating Rep and the particle drag force. 

The particle velocity as a function of particle position can be derived from the particle transport 
equation [4]. Integrating [4] twice will give an expression for the position of a particle, x r, assuming 
a particle initial velocity of v0. Combining this equation, using xp = 0 as an initial condition, with 
the equation for the particle velocity (the integral of [4]), gives the relationship between the particle 
position and velocity of 

Xp (¥p) ~- zvaln(Av~3v)--r6t , ,  [7] 

where v, is the particle asymptotic velocity (i.e. u f -  gr ), Av is the difference between the particle 
asymptotic velocity and its initial velocity (i.e. Va -- V0) and 6v is the difference between the present 
particle velocity and its initial velocity [i.e. vp(t ) - v0]. Invoking the assumption that normal particle 
movement is small [i.e. assumption (4)], one can assume that xp can be estimated by the distance 
from the test section entrance, X. The initial particle velocity, v0, was determined by evaluating 
[7] at one axial position in the freestream with a known particle relative velocity. Using this 
equation, with the corrected time-constant, for any given distance into the test section (e.g. X = 55 
or 85 cm), the estimated particle velocity could be determined iteratively, given the local flow 
velocity. The difference between the measured and estimated particle velocity profiles at X = 55 cm 
in figure 13 is < 2%. This excellent agreement implies that in these experiments, the variation in 
particle relative velocity across the boundary layer was a function of only the particle acceleration. 

Rather than determine a new v0 for X = 85 cm, a more rigorous approach was used. The growth 
of the boundary layer could be accounted for by assuming a constant duf/dt due to the increase 
in the displacement thickness. Assumption (4) must be generalized to assume that the particle has 
only been accelerated by the thin column of fluid starting at a given velocity at X = 55 cm and 
experiencing a constant fluid acceleration. The particle transport equation becomes 

d Vp(t) U55cm + ~ t Vp(/) g, [8] 
dt 

where 

du 
U 8 5 c m  = U 8 5 c m  "}-  ~-~ t 

and refers to the fluid velocity at the X = 85 cm station. Repeating the previous analysis, and taking 
dur/dt to be constant, the result is identical to [7] with an effective decrease in the particle asymptotic 
velocity: 

d 
ffa = L+a - -  T d t  U f  , [9] 
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where fa now refers to the particle asymptotic velocity at X = 85 cm. The constant flow acceleration 
was estimated by 

d u 3 AA 
~ U f :  UlA 1 AX' [10] 

from the conservation of mass, where At and u, are the cross-sectional area (minus the displacement 
thickness) and the flow freestream velocity, respectively, at an arbitrary point in the test section. 
Both the vertical distance traveled by the particle and the change in tunnel cross-sectional area are 
denoted by AX and AA, respectively. Figure 14 clearly demonstrates that this small correction is 
quite accurate for very slight flow accelerations. 

In conclusion, the excellent agreement between the model predictions and the empirical data 
demonstrates that for Rep of up to 5, a linear drag law can be used for the prediction of particle 
velocities as long as a corrected particle time-constant is used. This implies that, in the limit of small 
fluid accelerations, the crossing-trajectories effect has a negligible effect on the mean particle 
velocity. That is, the fluid properties along a particle path are relatively constant in the mean. 
No hypothetical increase in particle drag due to the presence of the wall (e.g. Matsumoto et al. 
1986) was seen in this experiment. 

Particle response to f luid turbulence 

The meanings of the measured r.m.s, particle velocity fluctuations are different from the 
corresponding single-phase fluid turbulence. Where fluid turbulence intensities portray the total 
turbulent kinetic energy of eddies in the fluid, the particle velocity fluctuations are a measure of 
the ability of a particle to respond to those eddies. A particle with a large time-constant, as 
compared with the fluid time-constant, will be unable to respond to the fluid turbulence and 
therefore should have no measurable r.m.s, velocity fluctuations. Equally, extremely small 
time-constant particles, e.g. the talcum powder, will have very little inertia and will have the same 
r.m.s, velocity fluctuations as the surrounding flow. A good measure for the ability of a particle 
to respond to fluid turbulence would be the Stokes number; the ratio of the particle time-constant 
to some characteristic fluid time scale. The Stokes number used in the current experiments was of 
the order of unity. 

Furthermore, all variations in the particle diameter, variations in the history of fluid neighbor- 
hoods experienced by a particle and variations in particle inertia will be measured as an increase 
in the particle r.m.s, velocity. A slightly smaller particle, say 85/~m dia, will have a lower asymptotic 
velocity than the corresponding slightly larger, 95/tm dia, particle. These variations in particle 
diameter can increase the measured particle r.m.s, velocity by as much as 30% for the particles 
in the present experiments (Rogers 1989). 

The standard deviation of the particle velocities are shown in figure 15 for the streamwise 
component and in figure 16 for the normal component. The particle velocity fluctuations are 
actually slightly greater than the corresponding fluid turbulence intensity in the streamwise 
direction for both the 50 and 90/zm dia particles. The standard deviation of the particle normal 
velocities shows the expected damped response, the damping being greater for the larger particles 
with longer time-constants. The differences in the apparent particle response between the 
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Figure 17. Flow energy spectra. X = 55 cm, y+ = 300. 

streamwise and normal directions can be at least partially explained by examining the typical flow 
energy spectra shown in figure 17. The bulk of  the energy in the normal component occurs at a 
significantly higher frequency than the streamwise component. Therefore, one would expect the 
particles to respond to a smaller fraction of  the fluid velocity fluctuations in the normal direction. 

The argument above cannot fully explain the fact that the particle r.m.s, velocity in the 
streamwise direction is nearly the same as the corresponding streamwise fluid turbulence intensity. 
The inverse of the particle time-constant, in the dimensionless scale of  figure 17, is 0.43 for the 
50 #m  particles and 0.16 for the 90 #m particles. Therefore, after examining figure 17, one would 
expect the particle response to be substantially attenuated relative to the flow turbulence intensity. 
Additional effects which act to increase the measured r.m.s, particle velocity will be discussed after 
the following presentation of Csanady's model. 

In order to model the response of  the particles to the fluid turbulence, Csanady (1963) derived 
a relationship between the fluid and particle power spectra. He assumed that: (1) the particle and 
flow velocities were periodic in time; (2) the particle and fluid fluctuated in phase; (3) the particle 
drag was a linear function of  the particle relative velocity; and (4) a particle was always excited 
by identical fluid turbulence. He derived the relationship between the particle and fluid power 
spectra to be 

1 
Qp(v) - 1 + 4rc2v2z 2 Qr(v), [11] 

where Qp(v) and Qf(v) are the particle and fluid power spectra, respectively, and v is the measured 
frequency. 

The problem with Csanady's derivation is that it relates the particle power spectrum to the fluid 
spectrum along with a particle path. He then assumed that the fluid turbulence experienced by a 
particle along the particle path would be the same as the fluid turbulence measured by a stationary 
probe. Directly applying [1 l] to spectra taken at a few points in the boundary layer shows poor 
agreement with the measured results (table 3). That is, the crossing-trajectories effect is not 
negligible in determining the response of  the particle. 

A method is required to translate the fluid power spectrum measured in the Eulerian reference 
frame to a corresponding power spectrum in the particle-Lagrangian reference frame. A fluid eddy 
will pass by a stationary probe substantially faster than it passes by a particle convecting with the 

Table 3. Results of Csanady's model without corrected frequency. 

50/~m 50 #m 90/~m 90 #m 
Velocity X location (cm) Y location (mm)  predic ted  measured  predicted measured 

Streamwise 55 4 0.29 1.2 0.15 1.1 
13 0.25 0.98 0.14 1.I 
38 0.30 0.92 0.16 1.6 

85 4 0.15 1.1 
13 0.14 1.0 
38 0.18 1.2 

Normal 55 6 0.08 0.39 0.05 0.33 
13 0.09 0.73 0.04 0.48 
38 0.07 0.63 0.04 0.80 

All values are ratios of particle to flow r.m.s, velocities \ ~ / .  
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flow. Therefore, a frequency measured in the Eulerian sense will be larger than the corresponding 
frequency measured in a particle-Lagrangian sense. In order to quantify the relationship between 
the two spectra, consider a very simple description of  frozen turbulence, i.e. a velocity field frozen 
in space, moving past both a measurement probe and a moving particle. A frequency will be 
measured by the Eulerian probe as this eddy passes by with a velocity, uf, of 

uf [12] V Eulerian le ' 

where le is the characteristic eddy length. The same eddy passing by the particle would have a 
frequency of  

ur, l [13] Yparticle = le 

Combining [12] and [13] gives the relationship between the two reference frames as being 

Urel [14] 
Vparticle ~ - -  VEulerian. 

uf 

Using this frequency stretching term in [14] gives substantially better results (table 4). The 
agreement in the measured and predicted particle r.m.s, velocities are within the quoted 
experimental uncertainty for the smaller time-constant particles. The 90 # m  particles, however, still 
have greater fluctuations than predicted. 

The increased error in the r.m.s, velocity predictions for the larger time-constant particles 
partially results from the increase in particle inertia. The larger particles have a larger mass and 
therefore the inertial effects on the particle behavior will be greater. The correction factor only 
accounts for the change of  fluid neighborhood due to gravitational drift. As the particle inertia 
increases, however, the variation in the fluid neighborhood around a particle resulting from particle 
inertia will have a larger effect on the particle r.m.s, fluctuations. This effect will be more prominent 
in the r.m.s, velocity for the larger particles, decreasing the accuracy of  the model. 

The frozen turbulence assumption can be checked by comparing the time it takes a particle to 
traverse an eddy to the eddy turnover time. Using the x-E estimation of  an isotropic eddy turnover 
time, 

lo 
t~=u~, [151 

with 

le = 0.3 x3/2. [16] 
E 

one can estimate the "lifetime" of an eddy in the gas flow of  the present experiments. Comparing 
this time, then, to the time it takes a particle to traverse the eddy, 

10 
t, = - - ,  [17]  

U f  - -  VO 

Table 4. Results of Csanady's model with corrected frequency. 

50 #m 50 #m 90 #m 90 #m 
Velocity X location (cm) Y location (mm) pred ic ted  m e a s u r e d  predicted measured 

Streamwise 55 4 0.79 1.2 0.56 1.1 
13 0.82 0.98 0.48 1.1 
38 0.85 0.92 0.56 1.6 

85 4 0.57 1.1 
13 0.54 1.0 
38 0.60 1.2 

Normal 55 6 0.36 0.39 0.20 0.33 
13 0.58 0.73 0.24 0.48 
38 0.38 0.63 0.15 0.80 

All values are ratios of particle to flow r.m.s, velocities \ x / ~ / '  
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indicates that the eddies in the flow field decay almost as rapidly as particles traverse them. The 
ratio of the two time scales, 

tr lu ' l  
- , [ 1 8 ]  

te Urel 

governs the validity of the assumption. Taking, for example, the location in the boundary layer 
at y ÷ =  300 and X = 55 cm, the particle residence time for the 90#m particles is about 40% of 
the isotropic eddy lifetime. The particle residence time for the 50/~m particles is about equal to 
the eddy lifetime (about 6 ms). It should be noted here that the estimates for E came from the 
experimental data of Murlis et al. (1982) (see table 2) and x was estimated from the measured u' 
and v' values. Thus, the frozen turbulence assumption is far from accurate for the particles used 
in the current experiments, yet the results from this assumption work well for the smaller 
time-constant particles. It would therefore appear that this modification of the Csanady model, 
with the appropriate stretching in frequency space, is restricted by particle inertia, rather than by 
eddy dissipation. 

Thus, particles with a significant relative velocity will be excited by a different energy spectrum 
than is measured in the Eulerian reference frame. For Rep close to 1, the inertial effects are small 
and the particle relative velocity can be taken into account by a simple correction term. As Rep 
increases, the particle inertial effects increase the measured particle r.m.s, velocity. 

CONCLUSION 

The results from the set of experiments described above demonstrated three important points 
about a lightly loaded, two-phase boundary layer. First, the evenly loaded (2% by mass) particle 
phase has no effect on the behavior of the gas-phase boundary layer. Second, the mean velocity 
profiles can be predicted by assuming a linear relationship between the particle drag and the particle 
relative velocity for particles up to Rep = 5 simply by adjusting the particle time-constant to account 
for the difference between Stokes drag and the particle's actual drag. Third, the particle r.m.s. 
velocities can be predicted for Rep values of about 1 to within 20%. As Rep increased, the prediction 
method failed. The proposed model does predict the directional attenuation of the particle r.m.s. 
velocity that was seen in the current experiments. 

This paper has presented an accurate method for predicting the mean particle transport in a 
vertical, turbulent boundary layer. It has also shown that non-Stokesian particles have substantially 
greater r.m.s, velocities than previously predicted, although the data reflect the trends predicted 
by the models. 
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